

Processing of AC-coupled n-in-p pixel detectors on MCz silicon using atomic layer deposited aluminium oxide

<u>Jennifer Ott</u>^{1,2,*}, A. Gädda^{1,3}, M. Golovleva⁴, T. Naaranoja¹, L. Martikainen¹, S. Bharthuar¹, S. Kirschenmann¹, E. Brücken¹, V. Litichevskyi¹, A. Karadzhinova-Ferrer⁵, M. Kalliokoski⁵, P. Luukka¹, J. Härkönen⁵

¹Helsinki Institute of Physics, Gustaf Hällströmin katu 2, FI-00014 University of Helsinki, Finland
 ²Aalto University, Department of Electronics and Nanoengineering, Tietotie 3, FI-02150 Espoo, Finland
 ³Advacam Oy, Tietotie 3 (P.O. Box 1000), FI-02044 VTT, Finland
 ⁴Lappeenranta University of Technology, Skinnarilankatu 34, FI-53850 Lappeenranta, Finland
 ⁵Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

Introduction

Magnetic Czochralski (MCz) silicon has been proposed as substrate material for silicon detectors in very high-radiation environments [1]

Electrical characterization

 Leakage current and signal profile studied with single pad detectors
 I_{leak} < 10 nA/cm²

- AC-coupling of pixels with titanium nitride (TiN) would provide a superior signal-to-noise ratio even in irradiated sensors, as the signal is separated from the leakage current DC component [2]
- Aluminum oxide (Al₂O₃) has been demonstrated in strip detectors as an alternative to pspray/p-stop insulation between detector segments, due to its high negative oxide charge [3,4]

2D simulation of Al_2O_3 insulation between pixels.

Atomic Layer Deposition of Alumina

- Atomic layer deposition (ALD) allows precise, layer-by-layer growth of thin films with excellent conformality over large surface areas [5,6]
- Deposition of Al₂O₃ from trimethylaluminium (TMA) and water is one of the most studied ALD processes [6], but requires optimization for

- Oxide charge and capacitance based on MOS capacitors
 - $> Q_{eff}$ around -3e12 q/cm²
 - > Oxide capacitance 72 nF/cm²
- Reference structures for pixel resistors
 ~15 kΩ per pixel

SEM cross-section of a pad detector, showing conformal Al_2O_3 layers.

AC-coupled pixel detectors

- 4160 pixels in double columns, matching the geometry of the CMS PSI46dig readout chip
- Two different schemes for connection of pixels to bias ring

Process flow

- **Δ** Starting material: p-type MCz silicon, 6", 320 µm, 4-8 kΩcm
- Only one lithography step and drive-in anneal is needed for ion implantation; no additional p-spray/p-stop

 $\Box \text{ ALD-Al}_2\text{O}_3:$

- Grown at 200 C from TMA and water, with additional ozone pulse to increase negative charge and avoid unwanted interface effects
- > Wet-etched with standard Al etchant
- > Stabilized by subsequent anneal at 370 C

Connection by aluminum metal

Performance estimation

- Translating measurements into properties of an individual pixel:
 Cutoff frequency over the coupling capacitor dielectric: ~1 MHz
 C_{pixel} << C_{coupling}, factor ~2000
- First tests with ion beam induced current using a
 2 MeV proton microprobe indicate uniform charge collection

Microscope image of an AC-coupled pixel detector (left), with a section of it scanned by proton microprobe (right).

Conclusions

*jennifer.ott@helsinki.fi

- An ALD process for alumina was optimized for detector processing on high-resistivity, 6" MCz-Si with emphasis on negative charge and good surface properties
- AC-coupled pixel detectors were realized by combining ALD-grown Al₂O₃ as coupling dielectric with TiN biasing resistors
 Electrical characterization through reference structures is promising; for test-beam campaigns sensors need to be flip-chip bonded to readout chip

L. Spiegel *et al Nucl. Instrum. Methods Phys. Res. A* 628, 242-245 (2011)
 J. Härkönen, J. Ott, M. Mäkelä, T. Arsenovich, A. Gädda, T. Peltola, E. Tuovinen, P. Luukka, E. Tuominen, A. Junkes, J. Niinistö, M. Ritala, *Nucl. Instrum. Methods Phys. Res. A* 831, 2-6 (2016)
 M. Christophersen, B.F. Phlips, *2011 IEEE NSS Conference Record*, 113-117 (2011)
 J. Härkönen, E. Tuovinen, P. Luukka, A. Gädda, T. Mäenpää, E. Tuominen, T. Arsenovich, A. Junkes, X. Wu, Z. Li, *Nucl. Instrum. Methods Phys. Res. A* 828, 46-51 (2016)
 S.M. George, *Chem. Rev.* 110, 111-131 (2011)
 R.L. Puurunen, *J. Appl. Phys.* 97, 121301-1—52 (2005)